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Abstract Nomenclature

Atmospheric considerations are a key element in dB

support of uninhabited aerial vehicle (UAV) flight DFRC
testing. The local atmospheric environment (wind speed

and direction, wind shear, temperature, precipitation,
and turbulence) must be characterized and understood. EAFB

The primary objective is to ensure safety of the vehicle,

test range, and ground assets. The generalized FTS
atmospheric behavior for any potential flight operations
site is best described by combining the local seasonal GPS

climatology, daily upper atmospheric wind and PMRF

temperature profiles, and hourly surface and low-level
wind observations. This paper describes a continuous

forecast update process based on monitoring RCC

atmospheric turbulence with surface and low-level wind RMS
for the support of UAV flights. Updates ensure the most
current available data needed for mission planning. Each SODAR

mission plan is developed so as not to exceed operation UAV
limits because of weather conditions. This paper also

discusses climatology, weather forecasts, and day-of-

flight weather monitoring for planning of uninhabited
aerial vehicle missions.
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Introduction

Uninhabited aerial vehicle (UAV) flight tests are being

conducted at the NASA Dryden Flight Research Center

(DFRC), Edwards Air Force Base (EAFB), Edwards,
California and the Naval Pacific Missile Range Facility

(PMRF), Barking Sands, Kauai, Hawaii in support of
NASA's Environmental Research Aircraft and Sensor

Technology (ERAST) program. Currently these
subsonic vehicles are designed to operate at altitudes

above 60,000 ft. The UAV vehicles are characterized b rv

long wingspans, light wing-loading (less than 20 lb/ft"z,
similar to those of sailplanes), and are powered by solar-

electric motors or super turbocharged internal

combustion engines (fig. 1). These vehicles are being

developed for environmental studies and sensor

development programs.
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Special care is needed to operate UAV's.

Meteorological conditions that can effect them, and
must be accounted for, include winds, turbulence and

cold temperatures at designated altitudes. Most UAV's

are fragile and travel at relatively slow speeds.

In general, the most important meteorological

consideration is wind speed and wind direction (both

surface and upper levels). Conditions such as clouds,

precipitation, and icing are also important, but if these

conditions prevail the flights are usually canceled.

Surface winds can affect the aircraft, not only during

takeoff and landing, but also during the preflight and

postflight ground handling. For this reason light winds

are the most favorable. High winds during flight can
cause excessive aircraft drift, making position

controllability of the aircraft much more difficult. This
can make a mission profile unattainable and result in the

flight being canceled. High winds can also produce a

large flight termination system (FTS) drift footprint, /

which may require flight cancellation. Experience has

shown that regardless of an airplane's mode of

propulsion, the most important operational

consideration for flight has become the weather.

To consider the suitability of a site for UAV flight test

activity, a detailed study of the site climatology and
local atmospheric behavior must be undertaken. This

study will determine the probability of meeting

requirements set forth by the aircraft limitations. A good

understanding of atmospheric behavior provides
information which determines whether a site is suitable

for flight test or not. The primary goal of this paper is to

discuss the use of climatology, surface and upper

atmospheric observations, weather forecasts, real-time

weather data, and equipment in the planning and

operational process for flight tests. In particular, focus

will center on the process development for the
Pathfinder solar-powered UAV.

Climatology

climatology is the statistical collective of weather

conditions for a given spatial and temporal reference.

Official climate data, known as Surface Observation

Climate Summaries and the Range Reference

Atmosphere, are generally available from the Range

Commanders Council (RCC) for specific sites. It is

important to understand the local seasonal and monthly
climate (the surface and upper air weather statistics or

climatology) to be able to establish times when weather

conditions are favorable to fly UAVs. Acceptable

minimal conditions are determined using established
operational limits, 2 which are established to minimize

the risk to the vehicle and to enhance the probability of a

safe recovery. Climatology is also useful in enabling

efficient flight scheduling so as to minimize

cancellations caused by weather. The surface weather

parameters considered most important are winds, cloud
cover, and precipitation; while the upper-level

parameters are primarily temperature and winds.

"Surface Climatology

The surface climatology describes the behavior of the

atmospheric boundary layer (the lowest 100 meters of

the atmosphere). The affects of surface conditions are of

primary importance during takeoff, landing, and ground
handling. Vehicles with light wing-loading (<20 Ib/ft 2)

are extremely sensitive to surface winds. At EAFB,

for example, understanding the hourly atmospheric
behavior enables wind-sensitive aircraft to conduct and

complete operations by late morning, before the

thermally induced afternoon winds arrive. It is important

to know the hourly surface behavior in the event of an

early return to base for some unexpected reason during

long flights. At EAFB the afternoon summer winds
increase during the day to about 12 kn 3 while at PMRF

the afternoon winds increase to about 8 kn4 Figure 2

shows the monthly trends and frequency of winds
observed less than 5 kn and less than 15 kn at EAFB

during the early morning, forenoon, and late afternoon.

Upper, Level Climatology

The upper-level winds impose significant restrictions

for UAV flight test operations. These operations require

light winds at all levels of the atmosphere in which the

aircraft operates. The best conditions usually exist when

a weak pressure gradient is associated with a high-

pressure system. Figures 3 and 4 show a representation
of the upper-level winds for each month at EAFB and

PMRF. These data are best used to quantify the effect of

climatological winds to project wind drift estimation for

FTS and mission planning. To show what a possible FTS

drift profile may look like using the EAFB data, two

months were chosen to represent wind profiles from

strong and calm wind months. The months chosen were

February (a climatologically high-wind month) and

August (a climatologically low-wind month) shown in

figure 5. The drift estimation plot shows the path the

vehicle would follow if the FTS chute is deployed at a

given altitude. The estimation is computed with a chute
fall rate of 30 fl/sec. Because February is a high-wind

month, the drift distance is greater in comparison to

August. A UAV such as Pathfinder, which uses a chute
with a 3-ft/sec fall rate, would travel one order of

magnitude farther.
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Theatmosphericprofileis importanttotheoperation

of UAV's primarily because of thermal limits on the
avionics and other hardware. Cold temperatures are a

concern to most UAVs. Cold temperatures can affect

critical aircraft components, such as battery power

efficiency for vehicles using batteries (like Pathfinder),

and general system failure due to cold soak.

The coldest temperatures are observed at or above

altitudes where the tropopause is located. The

tropopause is the boundary between the troposphere and

the stratosphere. There is a large difference in

temperature between EAFB (mid-latitude) and PMRF

(tropics) shown in figure 6. In the tropics, the tropopause

is located at a much higher altitude because the

atmosphere is warmer. Because the tropopause is at

greater altitudes in the tropics (as at PMRF), the

temperature lapse rate continues to decrease in altitude,

allowing the minimum temperature to get much colder.
Another difference between EAFB and PMRF is the

time of year at which the minimum cold temperature is
observed. At EAFB, the coldest temperatures occur in

early- to mid-summer when the tropopause is at the

greatest altitude, while at PMRF they occur in January.

Along with the mean temperature, standard deviations

(or sigmas) are used to examine extreme cold

temperature conditions. Extreme temperatures are based

on a 3-sigma value. The 3-sigma value for the January

minimum temperature at EAFB is ! 2.0 ° C. At PMRF the

3-sigma value is 9.7 ° C. Therefore, the extreme cold

temperatures at EAFB and PMRF for January are -78 ° C
(-108.4 ° F) and-86.4 ° C (-123.5 ° F) respectively.

Because aircraft limitations differ, it is important to

plan flight tests when the vehicle has the best

opportunity to fly. At EAFB and PMRF, there are

climatologically favorable months to fly UAV's and then
there are unfavorable months, when acceptable flight

conditions are not frequently experienced. Based on the

climatology of both EAFB and PMRF, UAVs would
have the best flight conditions during the summer and

early autumn months.

Forecast and Expected Variability

Probabilities for light wind conditions are enhanced

when there is a fair weather high-pressure system.
However, when weather conditions are dominated by

strong disturbances the task becomes much more

complicated. A climate forecast can be quite reliable if

stable air masses are in firm control, otherwise,

predictions for low winds may be difficult as weather

systems pass through the region. In general, the civil
aviation need for light winds is not as critical as it is for

UAV operations, in which forecasting light wind

conditions is a special challenge to the meteorological

staff. Depending on the operational characteristic of the
UAV and the desired mission profile, some months are

statistically better than others for flight tests. Models
such as the Nested Grid Method, the Aviation Model,

and the Medium Range Model provide very good
information that allow the meteorologist to provide

reliable weather data in a timely manner, enhancing the

probability of mission success. However, these models

are used as general guidance rather than the final word,

since they do not cover smaller-scale weather features
that may influence local winds at the flight operation site.

Each candidate site needs to have forecast information

available which is specific to itself, or sufficient data that
allows forecasts to be made on a regular basis. In

evaluating a site for flight operations an evaluation of

upper air forecast reliability and daily changes must be
conducted. One such evaluation was conducted for

EAFB, in which days were randomly selected that had

wind and temperature forecast data available. Each
forecast was then compared to the 24-hour validation

time, when such information was available. The forecast

errors are presented in an east and north component

reference (generally used in meteorology) and plotted as
a function of altitude (fig. 7(a) and 7(b)). The variability

of the data shows errors ranging from little or no change

(<5 kn) to days where as much as 68 kn (55 kn west-east

and 40 kn south-north) wind error was observed with

little warning. The primary interest in this evaluation is to

determine the reliability of the model data for specific
sites.

Day-of-Flight Observations

Rawinsonde balloon 5'6 data produces the basic

atmospheric observations of temperature, pressure,
relative humidity, and wind speed and direction. These

data are analyzed to ensure a valuable data set. The

rawinsonde data is not perfectly accurate, and in some

cases it may appear valid but actually be misleading.

Balloon inaccuracies have been experienced from time

to time. These inaccuracies could be caused by either a

loss of signal in the tracking systems through the base

receiver or global position system (GPS), or they could

result from a bad temperature and pressure sensor. At

first look, any day may appear perfect for flight with
clear skies and light surface winds, however, a further

analysis of weather conditions could reveal that the

mission objectives cannot be met based on operational

limitations of wind and temperature. Other important
information obtained from the balloon data relates to the

stability and turbulence properties of the atmosphere.

3
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The turbulence data are most difficult to forecast and

become a significant problem when working with lightly

wing-loaded aircraft. Conditions associated with

turbulence vary widely, however some simple indicators

such as strong vertical wind shears, unstable

temperature lapse rate, and upper altitude trough lines

may be used to indicate the presence of turbulence. In

preparation, early morning rawinsonde balloons should
be launched within three to six hours before takeoff to

allow ample time to examine the current state of the

atmosphere. The mission objectives and the vehicle will

determine the number of rawinsondes needed during the

test. For example, the Pathfinder aircraft with a wing-
loading of <1 lbs/ft 2, normally uses between five and

seven balloons during a mission. Other aircraft such as
ALTUS, which have higher wing loads and a higher true

airspeed, may require only one balloon before flight.

Surface anemometers are used to observe wind changes
that appear during ground and flight operations.

Persistent wind features (such as the trade winds) are

modified by local terrain-induced wind flows and can

produce erratic behavior. The use of anemometers

placed in various locations provide monitoring

capability to detect the onset of these conditions, so that

corrective action can be taken in time to prevent

potential mishaps.

Real-Time Data and Nowcasting

Early morning balloon data and the latest weather

forecasts provide the mission planners with the wind

profiles needed to simulate and schedule flights.

Depending on the vehicle and flight duration, updates to

the forecast, or nowcasts, are presented to mission

planners and pilots. A nowcast is a forecast based on

current observation in the local area that is valid for only

a few hours and are frequently updated. The new or

updated forecasts allow mission planners an opportunity

to amend flight plans based on the latest data.

To provide the meteorologists and mission planners
with the data needed to make nowcasts, and to

incorporate this information into a flight plan, many

sources of data are required. For example, surface wind

anemometers located at several sites around the facility

are used, especially for the most sensitive vehicles.

These anemometers are placed at strategic locations

(opposite runway thresholds, approximate landing zone,

hill tops, and buildings). To measure low-altitude winds

(< 1 km above ground) the use of sonic Doppler acoustic
radar (SODAR) 7 (or some other wind profiler) is

enlisted. These wind profilers constantly sample the

atmosphere at various levels in height, ranging from 15

to 1000 meters. The SODAR, as an example, emits a

low-frequency sound pulse, and receivers then listen for

reflected sound signals. The SODAR computer

compares the initial signal to the returned signal and

computes a frequency shift and range. This frequency

shift is directly related to the radial wind speed. The

turbulence is related to the intensity of the returned

signal. This tool provides near real-time updates to the

changing atmosphere. Updates from these instruments

are produced at user-selected intervals of from 1 to

60 min. The structure of the changing boundary layer

helps to provide planners an opportunity to modify the

time of takeoff or landing, cancel or delay a flight, and to
change which runway to use for takeoff and landing. In

contrast to the rawinsonde which are launched every few

hours and require several persons to launch, the SODAR

is self-sufficient; it provides constant updates of wind
and turbulence data within the lowest thousand meters

of the atmosphere. Figure 8(a) is a sample of the time-

height wind cross section using conventional wind barbs

for speed (in knots) and direction. Figure 8(b) shows the

facsimile display for returned signal strength. In this

figure the darker grays refer to the strength of the

returned signal. Figure 9 shows the weather clearance

flow chart used by Pathfinder in determining whether the

meteorological conditions support a flight.

Experiences

On July 7, 1997 the Pathfinder solar-powered aircraft
reached an altitude of 71,500 ft above the Pacific Ocean

off the coast of Hawaii. This record flight began at

08:30 hours (local time) with a picture-perfect mission

ending, landing at around 23:00 hours (local time). Days

earlier, the flight process described in figure 9 was used,

and because of bad weather, a four-day delay in the

flight occurred. When the mission finally began, the

upper-level winds were the calmest observed of all the

flighis to date. In addition, the use of the SODAR

enabled meteorologists to monitor the development of a

low-level gravity wave which caused winds to change

direction many times. The relaying of this nowcast

information to the planners, followed by recommended

changes, permitted the pilots to vary normal procedures.
Pilots delayed the landing for nearly an hour, and landed

from the opposite direction. When the mission was

completed a new altitude record for a solar-powered
vehicle was achieved. This flight and many others were

the final product of the atmospheric behavior research

process that this paper describes.

$u.mmary

A process which evaluates the atmospheric behavior
in support of uninhabited aerial vehicle planning and
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operationshasbeendeveloped.Byexaminingthehour-
to-hour,day-to-day,andmonth-to-monthvariationsin
the atmosphere,a pictureof the feasibilityfor
conductingflighttestoperationsat anysitebecomes
apparent.Evaluatingtheforecastoutputinrelationtothe
real-timeobservedchangesin the atmosphere,the
meteorologistcanproduceanowcastthatwill provide
valuablenewdatatomissionplanners.Thedesiredgoal
ofupdatingthemissionplanistoensurethattheaircraft
remainsin thedesiredtestareaandincloseproximity
whileconductingthemission.Todate,thisforecastand
monitoringprocesshasassistedthePathfinderUAVin
reachingamaximumaltitudeof 71,500ft.Thesuccess
ofPathfinderandotherUAVprogramsis strengthened
considerablybyunderstandingtheatmosphericbehavior
andpreparingforsuchchangesasdirectlyaffectaircraft
operations.Usingclimatologyto determinefavorable
locationsandseasonsto fly, supportedby real-time
forecastingand observations,hasmadeflight test
operationssaferandmorerepeatable.
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(a)ThePathfindervehicle. (c)TheAltusI vehicle.
EC96 43707-4

(b) The Darkstar vehicle.

EC96 43488-1

(d) The Perseus B vehicle.

EC96 43439-5

EC97 44102-2

(e) D-2 Demonstrator.

Figure !. Representative UAVs at NASA Dryden.
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(b) South-north.

Figure 7. Twenty-four-hour wind forecast errors for randomly selected days.
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(a) Example of SODAR time-height wind cross section.
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(b) Example of SODAR facsimile display time-height cross section for turbulence.

Figure 8. SODAR wind and turbulence displays.
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Figure 9. Flow chart for weather decision process.
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